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Homogeneity is inconsistent with general covariance, yet remains necessary given the practical lim-
itations of solving Einstein’s field equations. We resolve this contradiction using a scale-dependent
density profile. In this view, empty points have no ontological standing and the geometry of space-
time exists only as an abstract network of physical relationships. Gravitational boundaries are
considered to be coordinate artifacts rather than physical partitions. Our solution naturally derives
the Hubble constant and the CMB temperature with no adjustable parameters. A single coupling
constant k ≈ .833kg/m2 connects the surface area of the horizon(s) to the density distribution.
The result is a stable, static and infinite cosmological model capable of explaining a wide range of
phenomena.

I. INTRODUCTION

In contemporary physics, spacetime appears to
be a dynamic, physical entity that can curve, carry
energy, and interact with matter. But in philso-
phy, there is still an active debate on the topic.
[1, 2]. The substantivalists believe spacetime is a
real physical object, while relationalists see it as
a way of describing the relationships between real
objects.
Theories on quantum gravity explore radical

possibilities with some proposals suggesting space-
time emerges from fundamental quantum infor-
mation, discrete structures, or entanglement net-
works. Loop quantum gravity, for instance, pro-
poses a discrete, granular structure at the Planck
scale. However, attempts to reconcile the cos-
mological constant λ with vacuum energy density
continue to fail. Quantum field theory predicts a
vacuum energy density approximately 10120 times
larger than observed values, which is quite possi-
bly the worst prediction in physics. This catas-
trophe suggests we fundamentally misunderstand
how quantum fluctuations, gravity, and spacetime
relate. These anomalies indicate our understand-
ing is incomplete.

A. The Cosmological Principle

The cosmological principle is another hint that
something is wrong. It began as an extension of
the Copernican principle and served as a guiding
assumption for physicists. Today, the cosmologi-
cal principle functions mainly as an ansatz for the
FLRW metric.
When this metric is substituted into the EFE, it

produces the Friedmann equations, which describe
how the scale factor a(t) evolves with time. The
principle suggests the stress-energy tensor must be
that of a perfect fluid with uniform density ρ(t)
and pressure p(t) that depend only on time, not
position.
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This yields the first Friedmann equation:(
ȧ

a

)2

=
8πGρ

3
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a2
+

Λ

3
(1)

And the acceleration equation:

ä

a
= −4πG(ρ+ 3p)

3
+

Λ

3
(2)

All spatial variations are absorbed into the time-
dependent scale factor a(t), making the expan-
sion uniform across all space. However, the scale
factor is not derived from physics. It is an-
other mathematical convienence introduced to de-
scribe the observed geometry. Once you start
unpacking it, a single FLRW scale factor rests
on a stack of hidden assumptions. Any inhomo-
geneity (Lemâıtre–Tolman–Bondi) or anisotropy
(Bianchi) gives you several scale factors or even
functions of r as well as t. Dark energy, coinci-
dence, the axis of evil, the Hubble tension, back
reaction, the averaging problem, and the anoma-
lies in the CMB are all excellent indicators that
something subtle and fundamental is awry.

II. THEORETICAL FRAMEWORK

In the following pages, we offer a compelling ar-
gument that spacetime exists only as a relational
property of mass. What we think of as “empty”
space still participates in gravitational relation-
ships, and is in fact, never empty. A true vacuum
cannot exist because space is a continuous and
abstract property of the physical universe. Con-
ventional physics often treats gravitational bound-
aries as if they are real entities, but the universe
is not obligated to recognize these arbitrary lines.
Gravitational boundaries are nothing more than
epistemic conveniences. There is only one object,
the Universe.

One of the primary reasons spacetime is consid-
ered as a physical entity by some is because it ap-
pears to possess an energy that manifests as a re-
pulsive force on cosmological scales. Our approach
is to assume the opposite. Here, we hypothesize
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that virually all cosmological phenomenae can be
attributed to General Relativity alone.
We begin by assuming the cosmological redshift

arrises from the distribution of mass in the form of
gravitational redshift. We build our model using
the required distribution to achieve Hubble’s law.
We find a distribution with an inverse relationship
that varies radially and a uniform coupling con-
stant, k ≈ .833kg/m2. The profile reproduces the
linear redshift in Hubble’s law, develops a hori-
zon rh ≈ 13.7Gyr, connects the the constant k to
the surface density of the horizon, produces rising
curves in galaxies, pinpoints the properties of the
CMB with Hawking radiation, resolves the vac-
uum catostrophe, and provides a path to regular-
ization.

III. STATIC SOLUTION

We start with the general static, spherically
symmetric metric[1][14]:

ds2 = −A(r) dt2 +
1

1− 2Gm(r)
c2 r

dr2 + r2 dΩ2 (3)

The mass functionm(r) is defined by the density
ρ(r):

m(r) =

∫ r

0

4π r′2 ρ(r′) dr′ (4)

For the specific case ρ(r) = k/r:

m(r) =

∫ r

0

4π r′2
k

r′
dr′ = 2πk r2 (5)

The Einstein Field Equations (G1
1 = 8πG

c4 pr),
under the condition of zero radial pressure (pr =
0), yield a relation between A(r) and m(r):

d lnA

dr
=

2Gm(r)

c2 r2
(
1− 2Gm(r)

c2r

) (6)

Substituting m(r) = 2πkr2 and defining α ≡
4πGk
c2 :

d lnA

dr
=

2G (2πk r2)

c2 r2
(
1− 2G(2πk r2)

c2r

) (7)

=
4πGk

c2
(
1− 4πGk r

c2

) (8)

=
α

1− αr
(9)

Integrating this from 0 to r, assuming the
boundary condition A(0) = 1:∫ A(r)

A(0)

d lnA′ =

∫ r

0

α

1− αr′
dr′ (10)

lnA(r)− lnA(0) = [− ln(1− αr′)]r0 (11)

lnA(r) = − ln(1− αr) + ln(1) (12)

lnA(r) = − ln(1− αr) (13)

Therefore,

A(r) = e− ln(1−αr) =
1

1− αr
(14)

For a static emitter at radius r and a static ob-
server at the origin (r = 0), the gravitational red-
shift z(r) is given by[6]:

1 + z =

√
−gtt

(
robs

)
−gtt

(
rem

) =

√
A
(
robs

)
A
(
rem

) . (15)

Since A(0) = 1 and A(r) = (1− αr)−1:

1 + z(r) =

√
1

(1− αr)−1
=

√
1− αr (16)

Solving for z(r):

z(r) =
√
1− αr − 1 (17)

For small r where αr ≪ 1, using the binomial
approximation:

√
1− αr ≈ 1− αr

2
(18)

Therefore:

z(r) ≈ 1− αr

2
− 1 = −αr

2
(19)

For small redshifts, the recession velocity is v ≈
cz, giving:

v ≈ cαr

2
(20)

Blue vs Red

This redshift arises from a difference in gravi-
tational potential between emitter and observer.
Birkhoff’s theorem guarantees that for any spher-
ically symmetric mass distribution, the gravita-
tional field outside that distribution behaves ex-
actly as if all the mass were concentrated at the
center. This means the potential gained during
a photon’s journey along r can provide either a
blue or redshift, depending on the perspective. For
starlight observed from earth, this always results
in a distance proportional gravitational redshift.

A photon emitted at rem and observed at robs
undergoes a frequency shift given by

1 + z =

√
A(rem)

A(robs)
, A(r) =

1

1− αr
. (21)

Whether the end result is a blue or redshift de-
pends only on the relative gravitational potentials:

� If A(rem) > A(robs) (photon climbs out of a
deeper potential), then z > 0 (redshift).
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� If A(rem) < A(robs) (photon falls into a
deeper potential), then z < 0 (blueshift).

In the weak–field limit (αr ≪ 1) and for emission
at r versus observation at 0, this reproduces

z ≈ +αr
2 , (22)

whereas swapping emitter and observer gives

z ≈ −αr
2 . (23)

The gravitational acceleration in this spacetime
is constant:

a =
Gm(r)

r2
=

G · 2πkr2

r2
= 2πGk (24)

The Hubble parameter relates to this accelera-
tion as:

H =
c

rh
=

2a

c
=

2 · 2πGk

c
=

4πGk

c
(25)

Where rh = 1
α = c2

4πGk is the coordinate horizon
radius.
For a fixed horizon radius rh = 1.29× 1026 me-

ters:

k =
c2

4πGrh

=
9× 1016

4π · 6.67× 10−11 · 1.29× 1026

≈ 0.833 kg/m
2

(26)

This gives:

H =
c

rh
=

3× 108

1.29× 1026
≈ 2.33× 10−18 Hz (27)

Converting to km/s/Mpc:

H ≈ 2.33× 10−18 s−1 × 3.086× 1019 km/Mpc

≈ 72 km/s/Mpc (28)

For a complete listing of the relationships de-
rived in this model, see Appendix A.

A. Birkhoff’s Theorem

The metric component A(r) = 1
1−r/rh

becomes

singular at r = rh, representing a coordinate
horizon[3]. Birkhoff’s theorem guarantees that
this spherically symmetric solution maintains its
functional form regardless of coordinate choice[6].
This allows consistency whether centered on an
observer or any other reference point, making it
particularly relevant for cosmological analysis.
The shift for light traveling from a source at

position rs to an observer at position ro is given

by:

1 + z =

√
−gtt(robs)

−gtt(rem)
=

√
A(robs)

A(rem)

=

√
(1− robs/rh)−1

(1− rem/rh)−1
=

√
1− rem/rh
1− robs/rh

.

(29)

In this metric, the gravitational potential in-
creases with radius. Therefore:

� Redshift (z > 0) occurs when rem > robs
(the photon climbs toward a higher-potential
location).

� Blueshift (z < 0) occurs when rem < robs
(the photon falls into a deeper potential).

For small distances relative to the horizon
(rs, ro ≪ rh), the expression simplifies to:

z ≈ rs − ro
2rh

=
H(rs − ro)

2c
(30)

This directly produces the observed Hubble re-
lation for distant galaxies without requiring spa-
tial expansion[11]. For a complete listing of the
relationships derived in this model, see Appendix
A.

B. Horizon Properties

The coordinate horizon at rh = c2

4πGk ≈ 1.29 ×
1026 m represents a fundamental boundary where
the metric component A(r) = 1

1−r/rh
becomes

singular. Unlike a traditional event horizon, this
is a coordinate singularity that manifests univer-
sally for all observers[15]. The total mass enclosed
within this horizon is m(rh) = 2πkr2h ≈ 8.7× 1052

kg.
A fascinating property emerges when calculat-

ing the surface density of the horizon. The mass
within a thin shell near the horizon is given by:

δm = 4πr2h · ρ(rh) · δr = 4πr2h · k

rh
· δr = 4πrhkδr

(31)
The surface density, defined as mass per unit

area, is therefore:

σh =
δm

4πr2h
=

4πrhkδr

4πr2h
=

kδr

rh
(32)

As δr approaches rh (considering the entire hori-
zon), we derive the relationship:

σh = k ≈ 0.833 kg/m
2

(33)

Integrating the full mass profile ρ(r) = k
r from

0 to rh gives a total mass M = 2πkr2h, yielding a
corrected surface density:

σh =
M

4πr2h
=

k

2
(34)
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This establishes a direct relationship between
the coupling k and the horizon’s surface den-
sity. Many such relationships exist [17][15][16],
but this one is particularly interesteing because
it constrains the large scale distribution of mass.
This value, approximately 0.833 kg/m2, remains
invariant regardless of the observer’s position or
the scale under consideration, reinforcing the rela-
tional nature of spacetime proposed in our frame-
work.
The relationship σh = k

2 indicates that the sur-
face density of any observer’s coordinate horizon
is a universal constant, serving as a boundary con-
dition for the universe’s density distribution. This
provides strong theoretical support for the scale-
dependent density profile ρ(r) = k/r and its role
in role in cosmology.

C. Cosmic Microwave Background
Temperature

Using the same relational properties we have al-
ready established, we can offer a natural expla-
nation for the observed Cosmic Microwave Back-
ground (CMB) temperature without introducing
any additional parameters[13]. The coordinate

horizon at rh = c2

4πGk is associated with a thermo-
dynamic property analogous to Hawking radiation
in black hole thermodynamics[18].
For a horizon enclosing mass m(rh) = 2πkr2h,

the Hawking temperature at the horizon boundary
is given by:

TH =
ℏc3

8πGkBm(rh)
(35)

=
ℏc3

8πGkB · 2πkr2h
=

ℏc3

16π2GkBkr2h
(36)

Since rh = c2

4πGk , we can rewrite this as:

TH =
ℏc3

16π2GkBk · c4

16π2G2k2

=
ℏkG
ckB

(37)

This temperature undergoes blueshift as it prop-
agates through our metric. According to the for-
mula 1+ z =

√
1− αr, for a position very close to

the horizon at r = rh − δ, we have:

1 + z =

√
δ

rh
(38)

The observed CMB temperature relates to the
horizon temperature through this factor of change:

TCMB =
TH

1 + z
=

ℏkG
ckB

· 1√
δ
rh

=
ℏkG
ckB

·
√

rh
δ

(39)

Solving for δ:

δ = rh ·
(

ℏkG
ckBTCMB

)2

(40)

When we insert the values established earlier,
we can evaluate this precisely:

TH =
ℏkG
ckB

≈ 1.427× 10−30 K (41)

For the observed CMB temperature of TCMB =
2.725 K, the required redshift factor is:

1 + z =
TCMB

TH
≈ 1.91× 1030 (42)

This yields:

δ = rh × (1 + z)−2 ≈ 3.536× 10−35 m (43)

Which is approximately 2.19 times the Planck
length (lP = 1.616×10−35 m). At exactly this dis-
tance from the horizon, the blueshifted radiation
precisely matches the observed CMB temperature
of 2.725 K[13].

D. Galactic Rotation Curves

Our density profile ρ(r) = k/r produces a uni-
form gravitational acceleration. With mass func-
tion m(r) = 2πkr2, the gravitational acceleration
becomes:

a =
Gm(r)

r2
(44)

=
G · 2πkr2

r2
(45)

= 2πGk (46)

≈ 3.49× 10−10 m/s
2

(47)

This constant acceleration is similar to the crit-
ical acceleration scale a0 ≈ 1.2 × 10−10 m/s2

in Modified Newtonian Dynamics (MOND), pro-
posed to explain galactic rotation curves without
dark matter[16].

For circular orbits in this acceleration field, or-
bital velocities follow:

v =
√
2πGk · r (48)

This predicts a rising rotation curve with v ∝√
r, deviating from the Keplerian v ∝ 1/

√
r de-

cline expected in Newtonian dynamics with visi-
ble matter alone. At galactic scales of 1-30 kpc,
our model predicts velocities ranging from approx-
imately 100-570 km/s.

The rising curve differs from observed rota-
tion curves, which typically flatten at large radii.
While it certainly points in the right direction,
this approach may require modification at galactic
scales, where local mass concentrations distort the
background density profile.



5

E. Vacuum Energy Density

The vacuum catastrophe refers to the ∼ 10120

discrepancy between the theoretical vacuum en-
ergy density predicted by quantum field theory
and the observed value from cosmology[6][7]. In
QFT, vacuum energy density is defined as the en-
ergy of the quantum vacuum per unit volume. It
is calculated by summing the zero-point energies
of all quantum fields for all possible modes. Our
methodology requires us to abandon the substan-
tialist perspective and redefine it[2]. Here, vacuum
energy density is not a fundamental property of
space itself, but rather the minimum gravitational
energy density for a given volume.

ρ(r) =
k

r
(49)

where k ≈ 0.833 kg/m
2
is a universal constant.

This density profile yields a total mass function:

m(r) =

∫ r

0

4πr′2ρ(r′) dr′ = 2πkr2 (50)

The metric associated with this mass distribu-
tion is:

ds2 = − 1

1− r
rh

dt2+
1

1− 2Gm(r)
c2r

dr2+r2dΩ2 (51)

where rh = c2

4πGk ≈ 1.29×1026 m defines a coordi-
nate horizon. This horizon radius relates directly
to the Hubble constant:

H =
c

rh
≈ 72 km/s/Mpc (52)

The scale-dependent density at the horizon is:

ρ(rh) =
k

rh
≈ 6.48× 10−27 kg/m

3
=

2

3
ρc (53)

where ρc =
3H2

8πG ≈ 9.71× 10−27 kg/m
3
is the criti-

cal density[13].

F. Natural UV and IR Cutoffs

The scale-dependent density provides a natu-
ral regularization mechanism through two physical
cutoffs[4]:

IR cutoff : rh ≈ 1.29× 1026 m (54)

UV cutoff : δ ≈ 2.15× lP ≈ 3.48× 10−35 m (55)

where lP is the Planck length. The UV cutoff
emerges from the CMB temperature relation.

In quantum field theory, the vacuum energy den-
sity scales as ρvac ∼ 1

l4P
, giving[7]:

ρvac,QFT ≈ 6.79× 10252 kg/m
3

(56)

The ratio between QFT prediction and observa-
tion is ρvac,QFT /ρ(rh) ≈ 10279.

G. Scale-Dependent Cosmological Constant

This framework addresses the cosmological con-
stant problem by making Λ scale-dependent[8]:

Λ(r) =
8πGρ(r)

c2
=

8πGk

c2r
(57)

The values at the two cutoffs are:

Λ(lP ) ≈ 9.62× 108 m−2 (58)

Λ(rh) ≈ 1.21× 10−52 m−2 (59)

This gives a ratio Λ(lP )/Λ(rh) ≈ 8 × 1060, ex-
plaining the cosmological constant problem with-
out fine-tuning[6].

H. CMB Temperature Derivation

For a horizon of mass m(rh) = 2πkr2h, the asso-
ciated Hawking temperature is[18]:

TH =
ℏkG
ckB

≈ 1.42× 10−30 K (60)

This radiation undergoes redshift according to:

1 + z =

√
rh
δ

(61)

For the observed CMB temperature TCMB =
2.725K, the required redshift factor is:

(1 + z)−1 =
TH

TCMB
≈ 5.20× 10−31 (62)

Solving for δ:

δ = rh × (1 + z)−2 ≈ 3.48× 10−35 m ≈ 2.15× lP
(63)

This establishes a UV cutoff at δ ≈ 2.15 × lP ,
precisely determining where radiation originates to
produce the observed CMB temperature[13][17].
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IV. DISCUSSION

The presented arguments largely revolve around
the parameter k ≈ .833 kg/m

2
, but k is not chosen

arbitrarily. It is naturally imposed on the formu-
lation through general relativity. With all black
holes, there is inverse relationship between the sur-
face density and mass. Defining surface density Σ
as the mass per unit area of the event horizon, we
have:

Σ =
M

A

For a Schwarzschild black hole, the horizon area
is:

A = 4πr2s = 4π

(
2GM

c2

)2

=
16πG2M2

c4

Substituting this into the expression for Σ, we
obtain:

Σ =
M

16πG2M2

c4

=
c4

16πG2M

This leads directly to the product:

Σ ·M =
c4

16πG2
≈ 3.61× 1052 kg2/m2

All observers lie at the edge of some horizon
shaped by the relational properties of the mass
within it. This relationship exists as a consequence
of relativity. Starting at any point, if you draw a
line of arbitrary length to define radial coordinates
r. Any chosen r is a subset of a larger coordinate

range bounded by rh, where Φ(rh) = − c2

2 . This
defines a potential horizon beyond which the clas-
sical potential exceeds the relativistic threshold. A
consequence of this is that all points lie at the edge
of some horion rh.

The constant k appears in galactic rotation
curves and represents a fundamental constant[16].
It establishes the relationship between density and
radius (k = ρr), determines the constant acceler-
ation (a = 2πGk), and connects to the Hubble
parameter (H = 4πGk

c ).
The distribution yields a Hubble constant H =

2.33138307 × 10−18 s−1, or 71.953 km/s/Mpc,
aligning with measurements of Hubble’s law with-
out requiring expansion[11]. The calculated hori-

zon radius rh = c2

4πGk = 1.28589961× 1026 meters
(13.6 Gly) matches observational constraints[13].
There are several considerations not addressed

here, such as the abundance of light elements,
the CMB anisotropies and their angular power
spectrum[10], Baryon Acoustic Oscillations, grav-
itational lensing, structure formation, and a host
of other phenomeonon need be reconsidered.

V. CONCLUSIONS

The approach detailed above presents a com-
pelling argument for a relational view of the un-
vierse. What we call spacetime is merely the sys-
tem of physical relationships between objects pos-
sessing mass. All physical parameters, including
the Hubble constant, CMB temperature, and vac-
uum energy, emerge from fundamental relation-
ships without additional physics. This approach
resolves the Hubble tension, the vacuum catastro-
phe, and the cosmological constant problem with
parsimony. The model achieves consistency with
Hubble’s law, offers an alternative approach to
galactic rotation curves, and matches the observed
CMB temperature without dark energy, dark mat-
ter, expansion, or the big bang theory. The big
take away is method of modeling a static and sta-
ble universe with an observer dependent horizon
and the relational properties within it.

The parameter k ≈ .833 kg/m
2
serves as a fun-

damental constant linking quantum[4][5] and clas-
sical regimes. By reconceptualizing gravity as a
scale-dependent phenomenon, this framework pro-
vides a parsimonious understanding of cosmology
that preserves general covariance while eliminat-
ing the need for multiple additional substances and
mechanisms[8].
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Appendix A: Relationships and Parameters

� Horizon radius:

rh =
c2

4πGk
≈ 1.29× 1026 m (A.1)

� Density profile:

ρ(r) =
k

r
(A.2)

� Density at horizon:

ρ(rh) =
k

rh
≈ 6.46× 10−27 kg/m

3
(A.3)

� Mass function:

m(r) = 2πkr2 (A.4)

� Mass within horizon:

m(rh) = 2πkr2h ≈ 8.7× 1052 kg (A.5)

� Gravitational acceleration:

a = 2πGk ≈ 3.49× 10−10 m/s
2

(A.6)

� Hubble parameter:

H =
c

rh
=

4πGk

c
≈ 72 km/s/Mpc (A.7)

� Metric component:

A(r) =
1

1− r
rh

(A.8)

� Redshift function:

z(r) =

√
1− r

rh
− 1 (A.9)

� Redshift approximation:

z(r) ≈ − r

2rh
≈ −Hr

2c
(A.10)

� Surface density at horizon:

σh = k ≈ 0.833 kg/m
2

(A.11)

� Hawking temperature:

TH =
ℏGk

ckB
≈ 1.42× 10−30 K (A.12)

� CMB temperature:

TCMB =
TH√
δ/rh

≈ 2.725K (A.13)

� UV cutoff:

δ = rh

(
TH

TCMB

)2

≈ 3.48× 10−35 m (A.14)
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[9] Garćıa-Bellido, J. and Haugbølle, T. (2008). Con-

fronting Lemaitre-Tolman-Bondi models with ob-
servational cosmology. Journal of Cosmology and
Astroparticle Physics, 2008(04), 003.

[10] Land, K. and Magueijo, J. (2005). Examination
of evidence for a preferred axis in the cosmic radi-
ation anisotropy. Physical Review Letters, 95(7),
071301.

[11] Verde, L., Treu, T. and Riess, A. G. (2019). Ten-
sions between the early and late Universe. Nature
Astronomy, 3(10), 891-895.

[12] Buchert, T. (2008). Dark energy from structure: a
status report. General Relativity and Gravitation,
40(2), 467-527.

[13] Planck Collaboration. (2020). Planck 2018 results.
VI. Cosmological parameters. Astronomy & As-
trophysics, 641, A6.
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